Function reference
-
flexsurvreg()
- Flexible parametric regression for time-to-event data
-
flexsurvspline()
- Flexible survival regression using the Royston/Parmar spline model.
-
flexsurvrtrunc()
- Flexible parametric models for right-truncated, uncensored data defined by times of initial and final events.
-
survrtrunc()
- Nonparametric estimator of survival from right-truncated, uncensored data
-
summary(<flexsurvreg>)
- Summaries of fitted flexible survival models
-
standsurv()
- Marginal survival and hazards of fitted flexsurvreg models
-
coef(<flexsurvreg>)
- Extract model coefficients from fitted flexible survival models
-
normboot.flexsurvreg()
- Simulate from the asymptotic normal distribution of parameter estimates.
-
hr_flexsurvreg()
- Hazard ratio as a function of time from a parametric survival model
-
vcov(<flexsurvreg>)
- Variance-covariance matrix from a flexsurvreg model
-
simulate(<flexsurvreg>)
- Simulate censored time-to-event data from a fitted flexsurvreg model
-
plot(<flexsurvreg>)
- Plots of fitted flexible survival models
-
lines(<flexsurvreg>)
- Add fitted flexible survival curves to a plot
-
plot(<standsurv>)
- Plot standardized metrics from a fitted flexsurv model
-
summary(<flexsurvrtrunc>)
- Summarise quantities of interest from fitted flexsurvrtrunc models
-
plot(<survrtrunc>)
lines(<survrtrunc>)
- Plot nonparametric estimates of survival from right-truncated data.
-
fmsm()
- Construct a multi-state model from a set of parametric survival models
-
pars.fmsm()
- Transition-specific parameters in a flexible parametric multi-state model
-
pmatrix.fs()
- Transition probability matrix from a fully-parametric, time-inhomogeneous Markov multi-state model
-
pmatrix.simfs()
- Transition probability matrix from a fully-parametric, semi-Markov multi-state model
-
totlos.fs()
- Total length of stay in particular states for a fully-parametric, time-inhomogeneous Markov multi-state model
-
totlos.simfs()
- Expected total length of stay in specific states, from a fully-parametric, semi-Markov multi-state model
-
sim.fmsm()
- Simulate paths through a fully parametric semi-Markov multi-state model
-
simfs_bytrans()
- Reformat simulated multi-state data with one row per simulated transition
-
bootci.fmsm()
- Bootstrap confidence intervals for flexsurv output functions
-
pfinal_fmsm()
- Probabilities of final states in a flexible parametric competing risks model
-
simfinal_fmsm()
- Simulate and summarise final outcomes from a flexible parametric multi-state model
-
ajfit_fmsm()
- Check the fit of Markov flexible parametric multi-state models against nonparametric estimates.
-
msfit.flexsurvreg()
- Cumulative intensity function for parametric multi-state models
-
flexsurvmix()
- Flexible parametric mixture models for times to competing events
-
get_basepars()
- Evaluate baseline time-to-event distribution parameters given covariate values in a flexsurvmix model
-
mean_flexsurvmix()
- Mean times to events from a flexsurvmix model
-
pdf_flexsurvmix()
- Fitted densities for times to events in a flexsurvmix model
-
probs_flexsurvmix()
- Probabilities of competing events from a flexsurvmix model
-
p_flexsurvmix()
- Transition probabilities from a flexsurvmix model
-
quantile_flexsurvmix()
- Quantiles of time-to-event distributions in a flexsurvmix model
-
rmst_flexsurvmix()
- Restricted mean times to events from a flexsurvmix model
-
simt_flexsurvmix()
- Simulate times to competing events from a mixture multi-state model
-
fmixmsm()
- Constructor for a mixture multi-state model based on flexsurvmix
-
meanfinal_fmixmsm()
- Mean time to final state in a mixture multi-state model
-
ppath_fmixmsm()
- Probability of each pathway taken through a mixture multi-state model
-
qfinal_fmixmsm()
- Quantiles of the distribution of the time until reaching a final state in a mixture multi-state model
-
ajfit()
- Aalen-Johansen nonparametric estimates comparable to a fitted flexsurvmix model
-
ajfit_flexsurvmix()
- Forms a tidy data frame for plotting the fit of parametric mixture multi-state models against nonparametric estimates
-
logLik(<flexsurvreg>)
- Log likelihood from a flexsurvreg model
-
AICc(<flexsurvreg>)
AICC(<flexsurvreg>)
- Second-order Akaike information criterion
-
BIC(<flexsurvreg>)
- Bayesian Information Criterion (BIC) for comparison of flexsurvreg models
-
AIC(<fmsm>)
- Akaike's information criterion from a flexible parametric multistate model
-
nobs(<flexsurvreg>)
- Number of observations contributing to a fitted flexible survival model
-
residuals(<flexsurvreg>)
- Calculate residuals for flexible survival models
-
coxsnell_flexsurvreg()
- Cox-Snell residuals from a parametric survival model
-
dsurvspline()
psurvspline()
qsurvspline()
rsurvspline()
Hsurvspline()
hsurvspline()
rmst_survspline()
mean_survspline()
- Royston/Parmar spline survival distribution
-
mean_survspline0()
mean_survspline1()
mean_survspline2()
mean_survspline3()
mean_survspline4()
mean_survspline5()
mean_survspline6()
mean_survspline7()
rmst_survspline0()
rmst_survspline1()
rmst_survspline2()
rmst_survspline3()
rmst_survspline4()
rmst_survspline5()
rmst_survspline6()
rmst_survspline7()
dsurvspline0()
dsurvspline1()
dsurvspline2()
dsurvspline3()
dsurvspline4()
dsurvspline5()
dsurvspline6()
dsurvspline7()
psurvspline0()
psurvspline1()
psurvspline2()
psurvspline3()
psurvspline4()
psurvspline5()
psurvspline6()
psurvspline7()
qsurvspline0()
qsurvspline1()
qsurvspline2()
qsurvspline3()
qsurvspline4()
qsurvspline5()
qsurvspline6()
qsurvspline7()
rsurvspline0()
rsurvspline1()
rsurvspline2()
rsurvspline3()
rsurvspline4()
rsurvspline5()
rsurvspline6()
rsurvspline7()
hsurvspline0()
hsurvspline1()
hsurvspline2()
hsurvspline3()
hsurvspline4()
hsurvspline5()
hsurvspline6()
hsurvspline7()
Hsurvspline0()
Hsurvspline1()
Hsurvspline2()
Hsurvspline3()
Hsurvspline4()
Hsurvspline5()
Hsurvspline6()
Hsurvspline7()
- Royston/Parmar spline survival distribution functions with one argument per parameter
-
dweibullPH()
pweibullPH()
qweibullPH()
hweibullPH()
HweibullPH()
rweibullPH()
- Weibull distribution in proportional hazards parameterisation
-
dgengamma()
pgengamma()
Hgengamma()
hgengamma()
qgengamma()
rgengamma()
- Generalized gamma distribution
-
dgengamma.orig()
pgengamma.orig()
Hgengamma.orig()
hgengamma.orig()
qgengamma.orig()
rgengamma.orig()
- Generalized gamma distribution (original parameterisation)
-
dgenf.orig()
pgenf.orig()
Hgenf.orig()
hgenf.orig()
qgenf.orig()
rgenf.orig()
- Generalized F distribution (original parameterisation)
-
dgompertz()
pgompertz()
qgompertz()
rgompertz()
hgompertz()
Hgompertz()
- The Gompertz distribution
-
hexp()
Hexp()
hgamma()
Hgamma()
hlnorm()
Hlnorm()
hweibull()
Hweibull()
- Hazard and cumulative hazard functions
-
mean_exp()
rmst_exp()
mean_gamma()
rmst_gamma()
rmst_genf()
mean_genf()
rmst_genf.orig()
mean_genf.orig()
rmst_gengamma()
mean_gengamma()
rmst_gengamma.orig()
mean_gengamma.orig()
rmst_gompertz()
mean_gompertz()
mean_llogis()
rmst_llogis()
mean_lnorm()
rmst_lnorm()
mean_weibull()
rmst_weibull()
rmst_weibullPH()
mean_weibullPH()
- Mean and restricted mean survival functions
-
qgeneric()
- Generic function to find quantiles of a distribution
-
predict(<flexsurvreg>)
- Predictions from flexible survival models
-
tidy(<flexsurvreg>)
- Tidy a flexsurv model object
-
tidy(<standsurv>)
- Tidy a standsurv object.
-
augment(<flexsurvreg>)
- Augment data with information from a flexsurv model object
-
glance(<flexsurvreg>)
- Glance at a flexsurv model object
-
bc
- Breast cancer survival data
-
model.frame(<flexsurvreg>)
model.matrix(<flexsurvreg>)
- Extract original data from
flexsurvreg
objects.
-
model.frame(<flexsurvmix>)
- Model frame from a flexsurvmix object
-
basis()
- Natural cubic spline basis
-
rmst_generic()
- Generic function to find restricted mean survival time for some distribution
-
unroll.function()
- Convert a function with matrix arguments to a function with vector arguments.
-
flexsurv-package
flexsurv
- flexsurv: Flexible parametric survival and multi-state models