Augment data with information from a flexsurv model object
Source:R/broom-funs.R
augment.flexsurvreg.Rd
Augment accepts a model object and a dataset and adds information about each observation in the dataset. Most commonly, this includes predicted values in the .fitted
column, residuals in the .resid
column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a . prefix to avoid overwriting columns in the original dataset.
Usage
# S3 method for flexsurvreg
augment(
x,
data = NULL,
newdata = NULL,
type.predict = "response",
type.residuals = "response",
...
)
Arguments
- x
Output from
flexsurvreg
orflexsurvspline
, representing a fitted survival model object.- data
A
data.frame
ortibble
containing the original data that was used to produce the objectx
.- newdata
A
data.frame
ortibble
containing all the original predictors used to createx
. Defaults toNULL
, indicating that nothing has been passed tonewdata
. Ifnewdata
is specified, thedata
argument will be ignored.- type.predict
Character indicating type of prediction to use. Passed to the
type
argument of thepredict
generic. Allowed arguments vary with model class, so be sure to read thepredict.my_class
documentation.- type.residuals
Character indicating type of residuals to use. Passed to the type argument of
residuals
generic. Allowed arguments vary with model class, so be sure to read theresiduals.my_class
documentation.- ...
Additional arguments. Not currently used.
Value
A tibble
containing data
or newdata
and possible additional columns:
.fitted
Fitted values of model.se.fit
Standard errors of fitted values.resid
Residuals (not present ifnewdata
specified)
Details
If neither of data
or newdata
are specified, then model.frame(x)
will be used. It is worth noting that model.frame(x)
will include a Surv
object and not the original time-to-event variables used when fitting the flexsurvreg
object. If the original data is desired, specify data
.
Examples
fit <- flexsurvreg(formula = Surv(futime, fustat) ~ age, data = ovarian, dist = "exp")
augment(fit, data = ovarian)
#> # A tibble: 26 × 9
#> futime fustat age resid.ds rx ecog.ps .pred_time .std_error .resid
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 59 1 72.3 2 1 1 213. 113. -154.
#> 2 115 1 74.5 2 1 1 165. 103. -49.8
#> 3 156 1 66.5 2 1 2 427. 149. -271.
#> 4 421 0 53.4 2 2 1 2016. 879. -1595.
#> 5 431 1 50.3 2 1 1 2886. 1576. -2455.
#> 6 448 0 56.4 1 1 2 1402. 495. -954.
#> 7 464 1 56.9 2 2 2 1320. 452. -856.
#> 8 475 1 59.9 2 2 2 934. 281. -459.
#> 9 477 0 64.2 2 1 1 560. 174. -82.8
#> 10 563 1 55.2 1 2 2 1626. 623. -1063.
#> # ℹ 16 more rows