Package index
-
flexsurvreg() - Flexible parametric regression for time-to-event data
-
flexsurvspline() - Flexible survival regression using the Royston/Parmar spline model.
-
flexsurvrtrunc() - Flexible parametric models for right-truncated, uncensored data defined by times of initial and final events.
-
survrtrunc() - Nonparametric estimator of survival from right-truncated, uncensored data
-
summary(<flexsurvreg>) - Summaries of fitted flexible survival models
-
standsurv() - Marginal survival and hazards of fitted flexsurvreg models
-
coef(<flexsurvreg>) - Extract model coefficients from fitted flexible survival models
-
normboot.flexsurvreg() - Simulate from the asymptotic normal distribution of parameter estimates.
-
hr_flexsurvreg() - Hazard ratio as a function of time from a parametric survival model
-
vcov(<flexsurvreg>) - Variance-covariance matrix from a flexsurvreg model
-
simulate(<flexsurvreg>) - Simulate censored time-to-event data from a fitted flexsurvreg model
-
plot(<flexsurvreg>) - Plots of fitted flexible survival models
-
lines(<flexsurvreg>) - Add fitted flexible survival curves to a plot
-
plot(<standsurv>) - Plot standardized metrics from a fitted flexsurv model
-
summary(<flexsurvrtrunc>) - Summarise quantities of interest from fitted flexsurvrtrunc models
-
plot(<survrtrunc>)lines(<survrtrunc>) - Plot nonparametric estimates of survival from right-truncated data.
-
fmsm() - Construct a multi-state model from a set of parametric survival models
-
pars.fmsm() - Transition-specific parameters in a flexible parametric multi-state model
-
pmatrix.fs() - Transition probability matrix from a fully-parametric, time-inhomogeneous Markov multi-state model
-
pmatrix.simfs() - Transition probability matrix from a fully-parametric, semi-Markov multi-state model
-
totlos.fs() - Total length of stay in particular states for a fully-parametric, time-inhomogeneous Markov multi-state model
-
totlos.simfs() - Expected total length of stay in specific states, from a fully-parametric, semi-Markov multi-state model
-
sim.fmsm() - Simulate paths through a fully parametric semi-Markov multi-state model
-
simfs_bytrans() - Reformat simulated multi-state data with one row per simulated transition
-
bootci.fmsm() - Bootstrap confidence intervals for flexsurv output functions
-
pfinal_fmsm() - Probabilities of final states in a flexible parametric competing risks model
-
simfinal_fmsm() - Simulate and summarise final outcomes from a flexible parametric multi-state model
-
ajfit_fmsm() - Check the fit of Markov flexible parametric multi-state models against nonparametric estimates.
-
msfit.flexsurvreg() - Cumulative intensity function for parametric multi-state models
-
flexsurvmix() - Flexible parametric mixture models for times to competing events
-
get_basepars() - Evaluate baseline time-to-event distribution parameters given covariate values in a flexsurvmix model
-
mean_flexsurvmix() - Mean times to events from a flexsurvmix model
-
pdf_flexsurvmix() - Fitted densities for times to events in a flexsurvmix model
-
probs_flexsurvmix() - Probabilities of competing events from a flexsurvmix model
-
p_flexsurvmix() - Transition probabilities from a flexsurvmix model
-
quantile_flexsurvmix() - Quantiles of time-to-event distributions in a flexsurvmix model
-
rmst_flexsurvmix() - Restricted mean times to events from a flexsurvmix model
-
simt_flexsurvmix() - Simulate times to competing events from a mixture multi-state model
-
fmixmsm() - Constructor for a mixture multi-state model based on flexsurvmix
-
meanfinal_fmixmsm() - Mean time to final state in a mixture multi-state model
-
ppath_fmixmsm() - Probability of each pathway taken through a mixture multi-state model
-
qfinal_fmixmsm() - Quantiles of the distribution of the time until reaching a final state in a mixture multi-state model
-
ajfit() - Aalen-Johansen nonparametric estimates comparable to a fitted flexsurvmix model
-
ajfit_flexsurvmix() - Forms a tidy data frame for plotting the fit of parametric mixture multi-state models against nonparametric estimates
-
logLik(<flexsurvreg>) - Log likelihood from a flexsurvreg model
-
AICc(<flexsurvreg>)AICC(<flexsurvreg>) - Second-order Akaike information criterion
-
BIC(<flexsurvreg>) - Bayesian Information Criterion (BIC) for comparison of flexsurvreg models
-
AIC(<fmsm>) - Akaike's information criterion from a flexible parametric multistate model
-
nobs(<flexsurvreg>) - Number of observations contributing to a fitted flexible survival model
-
residuals(<flexsurvreg>) - Calculate residuals for flexible survival models
-
coxsnell_flexsurvreg() - Cox-Snell residuals from a parametric survival model
-
dsurvspline()psurvspline()qsurvspline()rsurvspline()Hsurvspline()hsurvspline()rmst_survspline()mean_survspline() - Royston/Parmar spline survival distribution
-
mean_survspline0()mean_survspline1()mean_survspline2()mean_survspline3()mean_survspline4()mean_survspline5()mean_survspline6()mean_survspline7()rmst_survspline0()rmst_survspline1()rmst_survspline2()rmst_survspline3()rmst_survspline4()rmst_survspline5()rmst_survspline6()rmst_survspline7()dsurvspline0()dsurvspline1()dsurvspline2()dsurvspline3()dsurvspline4()dsurvspline5()dsurvspline6()dsurvspline7()psurvspline0()psurvspline1()psurvspline2()psurvspline3()psurvspline4()psurvspline5()psurvspline6()psurvspline7()qsurvspline0()qsurvspline1()qsurvspline2()qsurvspline3()qsurvspline4()qsurvspline5()qsurvspline6()qsurvspline7()rsurvspline0()rsurvspline1()rsurvspline2()rsurvspline3()rsurvspline4()rsurvspline5()rsurvspline6()rsurvspline7()hsurvspline0()hsurvspline1()hsurvspline2()hsurvspline3()hsurvspline4()hsurvspline5()hsurvspline6()hsurvspline7()Hsurvspline0()Hsurvspline1()Hsurvspline2()Hsurvspline3()Hsurvspline4()Hsurvspline5()Hsurvspline6()Hsurvspline7() - Royston/Parmar spline survival distribution functions with one argument per parameter
-
dweibullPH()pweibullPH()qweibullPH()hweibullPH()HweibullPH()rweibullPH() - Weibull distribution in proportional hazards parameterisation
-
dgengamma()pgengamma()Hgengamma()hgengamma()qgengamma()rgengamma() - Generalized gamma distribution
-
dgengamma.orig()pgengamma.orig()Hgengamma.orig()hgengamma.orig()qgengamma.orig()rgengamma.orig() - Generalized gamma distribution (original parameterisation)
-
dgenf.orig()pgenf.orig()Hgenf.orig()hgenf.orig()qgenf.orig()rgenf.orig() - Generalized F distribution (original parameterisation)
-
dgompertz()pgompertz()qgompertz()rgompertz()hgompertz()Hgompertz() - The Gompertz distribution
-
hexp()Hexp()hgamma()Hgamma()hlnorm()Hlnorm()hweibull()Hweibull() - Hazard and cumulative hazard functions
-
mean_exp()rmst_exp()mean_gamma()rmst_gamma()rmst_genf()mean_genf()rmst_genf.orig()mean_genf.orig()rmst_gengamma()mean_gengamma()rmst_gengamma.orig()mean_gengamma.orig()rmst_gompertz()mean_gompertz()mean_llogis()rmst_llogis()mean_lnorm()rmst_lnorm()mean_weibull()rmst_weibull()rmst_weibullPH()mean_weibullPH() - Mean and restricted mean survival functions
-
qgeneric() - Generic function to find quantiles of a distribution
-
predict(<flexsurvreg>) - Predictions from flexible survival models
-
tidy(<flexsurvreg>) - Tidy a flexsurv model object
-
tidy(<standsurv>) - Tidy a standsurv object.
-
augment(<flexsurvreg>) - Augment data with information from a flexsurv model object
-
glance(<flexsurvreg>) - Glance at a flexsurv model object
-
bc - Breast cancer survival data
-
model.frame(<flexsurvreg>)model.matrix(<flexsurvreg>) - Extract original data from
flexsurvregobjects.
-
model.frame(<flexsurvmix>) - Model frame from a flexsurvmix object
-
basis() - Natural cubic spline basis
-
rmst_generic() - Generic function to find restricted mean survival time for some distribution
-
unroll.function() - Convert a function with matrix arguments to a function with vector arguments.
-
flexsurv-packageflexsurv - flexsurv: Flexible parametric survival and multi-state models