Transition intensity matrix from an msmbayes model
Arguments
- draws
Object returned by
msmbayes
.- new_data
Data frame with covariate values to predict for
- X
Lower-level alternative to specifying
new_data
, for developer use only.X
is a numeric matrix formed from column-binding the covariate design matrices for each transition in turn.- drop
Only used if there are no covariates supplied in
new_data
. Then ifdrop=TRUE
this returns anstates
xnstates
matrix, or ifdrop=FALSE
this returns a 3D array with first dimensionncovs=1
.- type
"posterior"
to returnrvar
objects containing posterior samples."mode"
to return posterior modes (only applicable if model was fitted with posterior mode optimisation).
Value
An array or matrix of rvar
objects or numbers, representing the
transition intensity matrix for each new prediction data point
See also
qdf
returns the same information in a
tidy data frame format
Examples
qmatrix(infsim_model)
#> rvar<4000>[2,2] mean ± sd:
#> [,1] [,2]
#> [1,] -0.74 ± 0.34 0.74 ± 0.34
#> [2,] 4.26 ± 1.98 -4.26 ± 1.98
summary(qmatrix(infsim_model))
#> # A tibble: 4 × 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 qmatrix(infsi… -0.740 -0.662 0.344 0.283 -1.41 -0.324 1.000 3891. 4019.
#> 2 qmatrix(infsi… 4.26 3.88 1.98 1.67 1.84 7.97 1.000 3893. 3960.
#> 3 qmatrix(infsi… 0.740 0.662 0.344 0.283 0.324 1.41 1.000 3891. 4019.
#> 4 qmatrix(infsi… -4.26 -3.88 1.98 1.67 -7.97 -1.84 1.000 3893. 3960.
summary(qmatrix(infsim_model), median, ~quantile(.x, c(0.025, 0.975)))
#> # A tibble: 4 × 4
#> variable median `2.5%` `97.5%`
#> <chr> <dbl> <dbl> <dbl>
#> 1 qmatrix(infsim_model)[1,1] -0.662 -1.62 -0.278
#> 2 qmatrix(infsim_model)[2,1] 3.88 1.61 9.08
#> 3 qmatrix(infsim_model)[1,2] 0.662 0.278 1.62
#> 4 qmatrix(infsim_model)[2,2] -3.88 -9.08 -1.61