Transition intensities from an msmbayes model, presented as a tidy data frame
Source:R/outputs.R
qdf.Rd
Transition intensities from an msmbayes model, presented as a tidy data frame
Arguments
- draws
Object returned by
msmbayes
.- new_data
Data frame with covariate values to predict for
- keep_covid
(logical) Keep the integer column
covid
identifying unique covariate combinations.
Value
A data frame with one row per from-state / to-state / covariate value.
Column posterior
is in the rvar
format of the
posterior package, representing a sample from a posterior
distribution. Use the summary
function on the data frame to
produce summary statistics such as the posterior median or mean (see
summary.msmbayes
).
See also
qmatrix
returns the same information in matrix format
Examples
qdf(infsim_model)
#> # A tibble: 2 × 4
#> from to posterior mode
#> <int> <int> <rvar[1d]> <dbl>
#> 1 1 2 0.74 ± 0.34 0.666
#> 2 2 1 4.26 ± 1.98 3.86
summary(qdf(infsim_model))
#> from to mode mean median sd mad q5 q95
#> 1 1 2 0.6661191 0.7396011 0.6623418 0.3435138 0.2831664 0.3238362 1.407096
#> 2 2 1 3.8606438 4.2635807 3.8764643 1.9757256 1.6720749 1.8415761 7.972412
#> rhat ess_bulk ess_tail
#> 1 0.9998919 3891.378 4018.977
#> 2 0.9999342 3893.001 3960.449
summary(qdf(infsim_model), median, ~quantile(.x, c(0.025, 0.975)))
#> from to mode median 2.5% 97.5%
#> 1 1 2 0.6661191 0.6623418 0.2775348 1.618714
#> 2 2 1 3.8606438 3.8764643 1.6053720 9.078582
qdf(infsim_modelc,
new_data = data.frame(sex=c("female","male")))
#> # A tibble: 4 × 5
#> from to posterior sex mode
#> <int> <int> <rvar[1d]> <chr> <dbl>
#> 1 1 2 0.69 ± 0.34 female 0.623
#> 2 1 2 0.78 ± 0.37 male 0.704
#> 3 2 1 4.20 ± 1.89 female 3.84
#> 4 2 1 4.20 ± 1.89 male 3.84