Package index
-
statetable.msm()
- Table of transitions
-
msm()
- Multi-state Markov and hidden Markov models in continuous time
-
crudeinits.msm()
- Calculate crude initial values for transition intensities
-
hmmCat()
hmmIdent()
hmmUnif()
hmmNorm()
hmmLNorm()
hmmExp()
hmmGamma()
hmmWeibull()
hmmPois()
hmmBinom()
hmmBetaBinom()
hmmNBinom()
hmmBeta()
hmmTNorm()
hmmMETNorm()
hmmMEUnif()
hmmT()
- Hidden Markov model constructors
-
hmmMV()
- Multivariate hidden Markov models
-
msm2Surv()
- Convert data for `msm' to data for `survival', `mstate' or `flexsurv' analysis
-
qmatrix.msm()
- Transition intensity matrix
-
pmatrix.msm()
- Transition probability matrix
-
pmatrix.piecewise.msm()
- Transition probability matrix for processes with piecewise-constant intensities
-
sojourn.msm()
- Mean sojourn times from a multi-state model
-
totlos.msm()
envisits.msm()
- Total length of stay, or expected number of visits
-
pnext.msm()
- Probability of each state being next
-
ppass.msm()
- Passage probabilities
-
efpt.msm()
- Expected first passage time
-
qratio.msm()
- Estimated ratio of transition intensities
-
hazard.msm()
- Calculate tables of hazard ratios for covariates on transition intensities
-
coef(<msm>)
- Extract model coefficients
-
boot.msm()
- Bootstrap resampling for multi-state models
-
ematrix.msm()
- Misclassification probability matrix
-
odds.msm()
- Calculate tables of odds ratios for covariates on misclassification probabilities
-
viterbi.msm()
- Calculate the probabilities of underlying states and the most likely path through them
-
phasemeans.msm()
- Parameters of phase-type models in mixture form
-
plot(<msm>)
- Plots of multi-state models
-
print(<msm>)
printnew.msm()
- Print a fitted msm model object
-
printold.msm()
- Print a fitted msm model object
-
summary(<msm>)
- Summarise a fitted multi-state model
-
msm.form.qoutput()
msm.form.eoutput()
- Extract msm model parameter estimates in compact format
-
tidy(<msm>)
- Tidy the parameter estimates from an msm model
-
tidy(<msm.est>)
- Tidy the output of pmatrix.msm and similar functions
-
tidy(<msm.estbystate>)
- Tidy the output of totlos.msm and similar functions
-
tidy(<msm.prevalence>)
- Tidy the output of prevalence.msm
-
prevalence.msm()
- Tables of observed and expected prevalences
-
plot(<prevalence.msm>)
- Plot of observed and expected prevalences
-
plot(<survfit.msm>)
- Plot empirical and fitted survival curves
-
plotprog.msm()
- Kaplan Meier estimates of incidence
-
logLik(<msm>)
- Extract model log-likelihood
-
lrtest.msm()
- Likelihood ratio test
-
pearson.msm()
- Pearson-type goodness-of-fit test
-
draic.msm()
drlcv.msm()
- Criteria for comparing two multi-state models with nested state spaces
-
scoreresid.msm()
- Score residuals
-
surface.msm()
contour(<msm>)
persp(<msm>)
image(<msm>)
- Explore the likelihood surface
-
sim.msm()
- Simulate one individual trajectory from a continuous-time Markov model
-
simmulti.msm()
- Simulate multiple trajectories from a multi-state Markov model with arbitrary observation times
-
simfitted.msm()
- Simulate from a Markov model fitted using msm
-
dmenorm()
pmenorm()
qmenorm()
rmenorm()
dmeunif()
pmeunif()
qmeunif()
rmeunif()
- Measurement error distributions
-
qgeneric()
- Generic function to find quantiles of a distribution
-
cav
- Heart transplant monitoring data
-
psor
- Psoriatic arthritis data
-
aneur
- Aortic aneurysm progression data
-
fev
- FEV1 measurements from lung transplant recipients
-
deltamethod()
- The delta method
-
MatrixExp()
- Matrix exponential
-
model.frame(<msm>)
model.matrix(<msm>)
- Extract original data from
msm
objects.
-
recreate.olddata()
- Convert data stored in msm object to old format
-
transient.msm()
absorbing.msm()
- Transient and absorbing states
-
hmodel2list()
- Convert a hmodel object to HMM constructor function calls
-
msm.object
- Fitted msm model objects
-
cmodel.object
- Developer documentation: censoring model object
-
qmodel.object
- Developer documentation: transition model structure object
-
qcmodel.object
- Developer documentation: model for covariates on transition intensities
-
emodel.object
- Developer documentation: misclassification model structure object
-
ecmodel.object
- Developer documentation: model for covariates on misclassification probabilities
-
hmodel.object
- Developer documentation: hidden Markov model structure object
-
paramdata.object
- Developer documentation: internal msm parameters object
-
updatepars.msm()
- Update the maximum likelihood estimates in a fitted model object.
-
msm-package
- Multi-State Markov and Hidden Markov Models in Continuous Time