Package index
-
statetable.msm() - Table of transitions
-
msm() - Multi-state Markov and hidden Markov models in continuous time
-
crudeinits.msm() - Calculate crude initial values for transition intensities
-
hmmCat()hmmIdent()hmmUnif()hmmNorm()hmmLNorm()hmmExp()hmmGamma()hmmWeibull()hmmPois()hmmBinom()hmmBetaBinom()hmmNBinom()hmmBeta()hmmTNorm()hmmMETNorm()hmmMEUnif()hmmT() - Hidden Markov model constructors
-
hmmMV() - Multivariate hidden Markov models
-
msm2Surv() - Convert data for `msm' to data for `survival', `mstate' or `flexsurv' analysis
-
qmatrix.msm() - Transition intensity matrix
-
pmatrix.msm() - Transition probability matrix
-
pmatrix.piecewise.msm() - Transition probability matrix for processes with piecewise-constant intensities
-
sojourn.msm() - Mean sojourn times from a multi-state model
-
totlos.msm()envisits.msm() - Total length of stay, or expected number of visits
-
pnext.msm() - Probability of each state being next
-
ppass.msm() - Passage probabilities
-
efpt.msm() - Expected first passage time
-
qratio.msm() - Estimated ratio of transition intensities
-
hazard.msm() - Calculate tables of hazard ratios for covariates on transition intensities
-
coef(<msm>) - Extract model coefficients
-
boot.msm() - Bootstrap resampling for multi-state models
-
ematrix.msm() - Misclassification probability matrix
-
odds.msm() - Calculate tables of odds ratios for covariates on misclassification probabilities
-
viterbi.msm() - Calculate the probabilities of underlying states and the most likely path through them
-
phasemeans.msm() - Parameters of phase-type models in mixture form
-
plot(<msm>) - Plots of multi-state models
-
print(<msm>)printnew.msm() - Print a fitted msm model object
-
printold.msm() - Print a fitted msm model object
-
summary(<msm>) - Summarise a fitted multi-state model
-
msm.form.qoutput()msm.form.eoutput() - Extract msm model parameter estimates in compact format
-
tidy(<msm>) - Tidy the parameter estimates from an msm model
-
tidy(<msm.est>) - Tidy the output of pmatrix.msm and similar functions
-
tidy(<msm.estbystate>) - Tidy the output of totlos.msm and similar functions
-
tidy(<msm.prevalence>) - Tidy the output of prevalence.msm
-
prevalence.msm() - Tables of observed and expected prevalences
-
plot(<prevalence.msm>) - Plot of observed and expected prevalences
-
plot(<survfit.msm>) - Plot empirical and fitted survival curves
-
plotprog.msm() - Kaplan Meier estimates of incidence
-
logLik(<msm>) - Extract model log-likelihood
-
lrtest.msm() - Likelihood ratio test
-
pearson.msm() - Pearson-type goodness-of-fit test
-
draic.msm()drlcv.msm() - Criteria for comparing two multi-state models with nested state spaces
-
scoreresid.msm() - Score residuals
-
surface.msm()contour(<msm>)persp(<msm>)image(<msm>) - Explore the likelihood surface
-
sim.msm() - Simulate one individual trajectory from a continuous-time Markov model
-
simmulti.msm() - Simulate multiple trajectories from a multi-state Markov model with arbitrary observation times
-
simfitted.msm() - Simulate from a Markov model fitted using msm
-
dmenorm()pmenorm()qmenorm()rmenorm()dmeunif()pmeunif()qmeunif()rmeunif() - Measurement error distributions
-
qgeneric() - Generic function to find quantiles of a distribution
-
cav - Heart transplant monitoring data
-
psor - Psoriatic arthritis data
-
aneur - Aortic aneurysm progression data
-
fev - FEV1 measurements from lung transplant recipients
-
deltamethod() - The delta method
-
MatrixExp() - Matrix exponential
-
model.frame(<msm>)model.matrix(<msm>) - Extract original data from
msmobjects.
-
recreate.olddata() - Convert data stored in msm object to old format
-
transient.msm()absorbing.msm() - Transient and absorbing states
-
hmodel2list() - Convert a hmodel object to HMM constructor function calls
-
msm.object - Fitted msm model objects
-
cmodel.object - Developer documentation: censoring model object
-
qmodel.object - Developer documentation: transition model structure object
-
qcmodel.object - Developer documentation: model for covariates on transition intensities
-
emodel.object - Developer documentation: misclassification model structure object
-
ecmodel.object - Developer documentation: model for covariates on misclassification probabilities
-
hmodel.object - Developer documentation: hidden Markov model structure object
-
paramdata.object - Developer documentation: internal msm parameters object
-
updatepars.msm() - Update the maximum likelihood estimates in a fitted model object.
-
msm-package - Multi-State Markov and Hidden Markov Models in Continuous Time