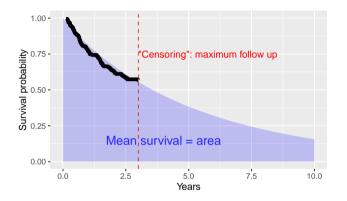
'survextrap': flexible and transparent Bayesian survival modelling using combinations of data and judgements

> Christopher Jackson MRC Biostatistics Unit, University of Cambridge with Iain Timmins (AstraZeneca), Michael Sweeting (GSK)

> > PSI Conference, 9 June 2025



Limited trial follow up

Health economic decision making needs expected survival over the longer term

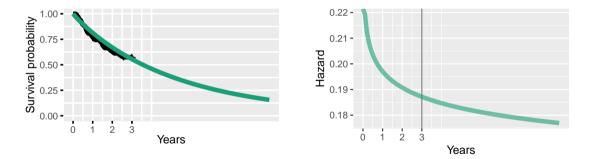
Area under the survival curve. Estimated by parametric models...

Consequences of policy decisions will last longer than the end of the data

Parametric survival models: examples

Weibull distribution

Survivor function $S(t|\lambda, \alpha) = \exp(-\lambda t^{\alpha})$



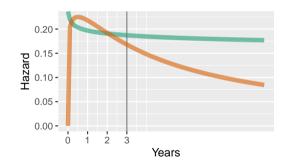
Hazard function $h(t|\lambda, \alpha) = \lambda \alpha t^{\alpha-1}$

Parametric survival models: examples

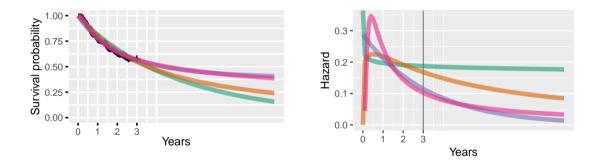
Log-logistic distribution

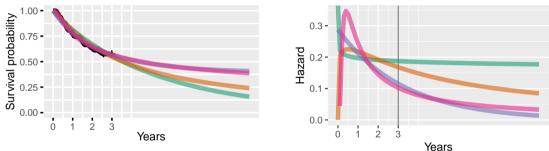
Survivor function $S(t|\lambda,\alpha) = 1/(1 + (t/b)^a)$ 1.00 - 1.00 - 2.00 Survival brobability 0.75 - 0.00 - 0.25 - 0.00 1.00 -0.00 -1 2 3 Ô Years

Hazard function $h(t|\lambda, \alpha) =$



Parametric survival models: examples





Fit a set of models and judge which :

- fits the data best in the short term? (easy, e.g. AIC)
- gives more plausible risk changes in the long term? harder

Observed data

- survival on "standard of care" arm same as recent patients in a disease registry?
- survival of people with the disease cannot be better than comparable people in the general population?

Clinical judgements about the mechanism

 e.g. some people get cured of the disease, so disease-specific hazard of death reduces to zero

Formally-elicited judgements

e.g. probability of survival to 10 years, given survival to 5 years

Use such information in a transparent, statistically-principled way

survextrap R package

https://chjackson.github.io/survextrap Jackson, BMC Med Res Meth, 2023

Design goals:

- 1. Incorporate all available data: Bayesian evidence synthesis
- 2. Fit the data as well as possible: Spline modelling
- 3. Quantify uncertainty: Bayesian
- 4. Be easy to use: *R* package wraps Stan, single commands to fit model / extract outputs
- 5. Make key assumptions transparent: *user states these in their command, computer does the hard work*

Rapid tour...

survextrap R package

https://chjackson.github.io/survextrap

Jackson, BMC Med Res Meth, 2023

Design goals:

- 1. Incorporate all available data: Bayesian evidence synthesis
- 2. Fit the data as well as possible: Spline modelling
- 3. Quantify uncertainty: Bayesian
- 4. Be easy to use: *R* package wraps Stan, single commands to fit model / extract outputs
- 5. Make key assumptions transparent: *user states these in their command, computer does the hard work*

Rapid tour...

survextrap R package

https://chjackson.github.io/survextrap

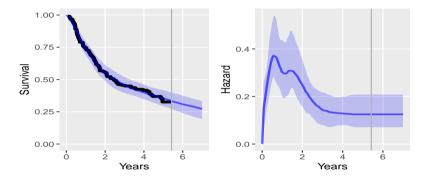
Jackson, BMC Med Res Meth, 2023

Design goals:

- 1. Incorporate all available data: Bayesian evidence synthesis
- 2. Fit the data as well as possible: Spline modelling
- 3. Quantify uncertainty: Bayesian
- 4. Be easy to use: *R* package wraps Stan, single commands to fit model / extract outputs
- 5. Make key assumptions transparent: *user states these in their command, computer does the hard work*

Rapid tour...

Spline-based, flexible model for the hazard

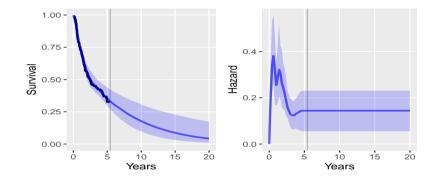


Running example: head and neck cancer trial data from Guyot et al. 2017

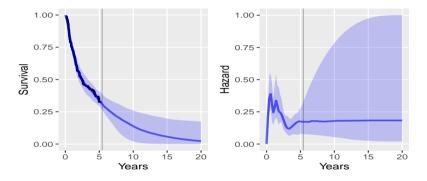
Default model: M-spline 10 parameters, penalized to control overfitting Flexible hazard within data, constant beyond data

mod1 <- survextrap(Surv(years, d) ~ 1, data=dat)</pre>

Spline-based, flexible model for the hazard



Spline-based, flexible model for the hazard



Allow hazard to vary to 20 years, by adding a spline "knot". Weak assumption: hazard is smooth — short-term extrapolation influenced weakly by latest data.

Posterior represents "structural" uncertainty due to lack of data

mod2 <- survextrap(Surv(years, d) ~ 1, add_knots=20)</pre>

Including data external to the trial

Supplied as aggregate conditional survival counts over any number of different time intervals. Example:

Follow-up period		Number		Covariates
From t	Тои	Alive at <i>t</i>	Still alive at <i>u</i>	
5	10	358	325	
10	15	308	285	
etc.				

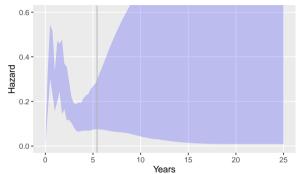
- Registry data, population data, and elicited judgements... can often be expressed in this form
- Each count of survivors is a binomal outcome, with probability defined by the spline model and covariates
- Bayesian evidence synthesis: posterior for parameters determined given individual and external data together

Including data external to the trial

Supplied as aggregate conditional survival counts over any number of different time intervals. Example:

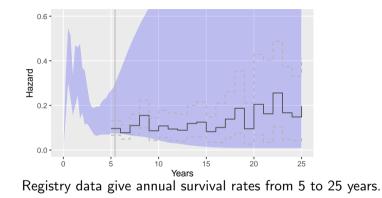
Follow-up period		Number		Covariates
From t	Тои	Alive at <i>t</i>	Still alive at <i>u</i>	
5	10	358	325	
10	15	308	285	
etc.				'

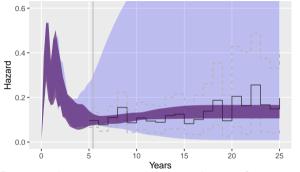
- Registry data, population data, and elicited judgements... can often be expressed in this form
- Each count of survivors is a binomal outcome, with probability defined by the spline model and covariates
- Bayesian evidence synthesis: posterior for parameters determined given individual and external data together



With no external data, and just a smoothness assumption, estimated long-term hazard is extremely uncertain

Christopher Jackson

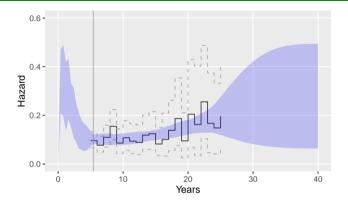




Registry data give annual survival rates from 5 to 25 years.

Enables a confident "extrapolation" of the hazard for control group survival

Christopher Jackson



Extrapolating up to 40 years now...

Christopher Jackson

Can supply a known background hazard $h_b(t)$

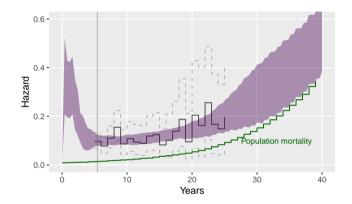
• e.g. national mortality statistics for people of comparable age/sex

Hazard for trial patients modelled as additive Flexible spline model placed on the excess hazard $h_e(t)$ instead of h(t)

$$h(t) = h_b(t) + h_e(t)$$

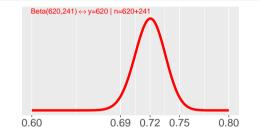
i.e. no lower than population hazard

Additive hazards model



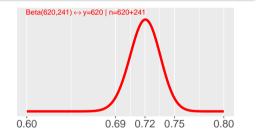
Including expert judgements on long-term survival

- Example: suppose we judge that over some interval, the survival probability is 0.72 (0.69, 0.75)
- Find Beta(a, b) distribution that best fits this belief



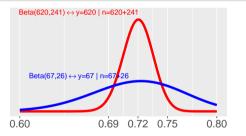
- Find Binomial data (y|n) that would give the (conjugate) posterior Beta(a, b) when combined with a vague prior
- Treat (y|n) as "external data" to be analysed jointly with the trial data

- Example: suppose we judge that over some interval, the survival probability is 0.72 (0.69, 0.75)
- Find Beta(a, b) distribution that best fits this belief



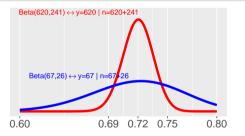
- Find Binomial data (y|n) that would give the (conjugate) posterior Beta(a, b) when combined with a vague prior
 - Treat (y|n) as "external data" to be analysed jointly with the trial data

- Example: suppose we judge that over some interval, the survival probability is 0.72 (0.69, 0.75)
- Find Beta(a, b) distribution that best fits this belief



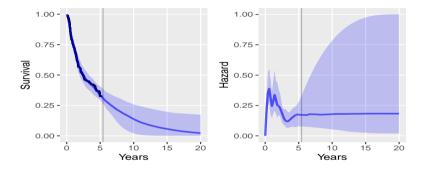
- Find Binomial data (y|n) that would give the (conjugate) posterior Beta(a, b) when combined with a vague prior
 - ► Treat (y|n) as "external data" to be analysed jointly with the trial data

- Example: suppose we judge that over some interval, the survival probability is 0.72 (0.69, 0.75)
- Find Beta(a, b) distribution that best fits this belief



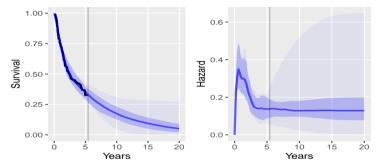
- Find Binomial data (y|n) that would give the (conjugate) posterior Beta(a, b) when combined with a vague prior
- Treat (y|n) as "external data" to be analysed jointly with the trial data

Model combining trial data and expert judgement



Trial data only

Model combining trial data and expert judgement



Trial data + elicited probability that patients who survive the trial (5 years) are still alive at 20 years: 12% (95% CI 4% to 25%).

```
mod_seer <- survextrap(Surv(years, d) ~ 1, data=dat,
external = data.frame(r=5, n=35, start=5, stop=20),
add_knots=c(20))
```

Christopher Jackson

Proportional hazards model

Flexible non-proportional hazards model

Additionally can impose a waning effect when predicting

- log hazard ratio for a treatment decreases from modelled value to zero over some time period
- for sensitivity analysis to what happens after trial data

Proportional hazards model

Flexible non-proportional hazards model

Additionally can impose a waning effect when predicting

- log hazard ratio for a treatment decreases from modelled value to zero over some time period
- for sensitivity analysis to what happens after trial data

Proportional hazards model

Flexible non-proportional hazards model

Additionally can impose a waning effect when predicting

- log hazard ratio for a treatment decreases from modelled value to zero over some time period
- for sensitivity analysis to what happens after trial data

Technical details, nuisance choices

- Prior distributions, detailed specification of spline (knots, smoothness penalty...), can all be customised
- Sensible package defaults demonstrated by simulation

Detailed documentation and worked examples https://chjackson.github.io/survextrap Jackson, BMC Med Res Meth, 2023

Simulation studies

Timmins I., Torabi F., Jackson C., Lambert P., Sweeting M. (2025) *Simulation-based assessment of a Bayesian survival model with flexible baseline hazard and time-dependent effects.* 10.48550/arXiv.2503.21388 and ongoing work

Technical details, nuisance choices

- Prior distributions, detailed specification of spline (knots, smoothness penalty...), can all be customised
- Sensible package defaults demonstrated by simulation

Detailed documentation and worked examples https://chjackson.github.io/survextrap Jackson, BMC Med Res Meth, 2023

Simulation studies

Timmins I., Torabi F., Jackson C., Lambert P., Sweeting M. (2025) *Simulation-based assessment of a Bayesian survival model with flexible baseline hazard and time-dependent effects.* 10.48550/arXiv.2503.21388 and ongoing work