References
Best N G, Cowles M K and Vines S K (1997)
CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.4
. MRC Biostatistics Unit, Cambridge:
http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
Breslow N E and Clayton D G (1993) Approximate inference in generalized linear mixed models.
Journal of the American Statistical Association
.
88
, 9-25.
Brooks S P (1998) Markov chain Monte Carlo method and its application.
The Statistician
.
47
, 69-100.
Brooks S P and Gelman A (1998) Alternative methods for monitoring convergence of iterative simulations.
Journal of Computational and Graphical Statistics
.
7
, 434-455.
Carlin B P
and Louis T A (1996)
Bayes and Empirical Bayes Methods for Data Analysis
. Chapman and Hall, London, UK.
Congdon P (2001)
Bayesian Statistical Modelling
. John Wiley & Sons, Chichester, UK.
Crowder M J (1978) Beta-binomial Anova for proportions.
Applied Statistics
.
27
, 34-37.
Gamerman D (1997) Sampling from the posterior distribution in generalized linear mixed models.
Statistics and Computing
.
7
, 57-68.
Gelman A, Carlin J C, Stern H and Rubin D B (1995)
Bayesian Data Analysis.
Chapman and Hall, New York.
Gilks W (1992) Derivative-free adaptive rejection sampling for Gibbs sampling. In
Bayesian Statistics 4
, (J M Bernardo, J O Berger, A P Dawid, and A F M Smith, eds), Oxford University Press, UK, pp. 641-665.
Gilks W R, Richardson S and Spiegelhalter D J (Eds.) (1996)
Markov chain Monte Carlo in Practice
. Chapman and Hall, London, UK.
Jackson C H (2008) Displaying uncertainty with shading.
The American Statistician.
62
, 340-347.
Neal R (1997) Markov chain Monte Carlo methods based on 'slicing' the density function.
Technical Report 9722
, Department of Statistics, University of Toronto, Canada:
http://www.cs.utoronto.ca/~radford/publications.html
Neal R (1998) Suppressing random walks in Markov chain Monte Carlo using ordered over-relaxation. In
Learning in Graphical Models
, (M I Jordan, ed). Kluwer Academic Publishers, Dordrecht, pp. 205-230.
http://www.cs.utoronto.ca/~radford/publications.html
Roberts G O (1996). Markov chain concepts related to sampling algorithms. In W R Gilks, S Richardson and D J Spiegelhalter (Eds.)
Markov chain Monte Carlo in Practice
. Chapman and Hall, London, UK.
Spiegelhalter D J, Best N G, Carlin B P and van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion).
J. Roy. Statist. Soc. B
.
64
, 583-640.
Tierney L (1983) A space-efficient recursive procedure for estimating a quantile of an unknown distribution.
SIAM J. Sci. Stat. Comput
.
4
, 706-711.