[references0]     References

Best N G, Cowles M K and Vines S K (1997) CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.4 . MRC Biostatistics Unit, Cambridge:

Breslow N E and Clayton D G (1993) Approximate inference in generalized linear mixed models.
Journal of the American Statistical Association . 88 , 9-25.

Brooks S P (1998) Markov chain Monte Carlo method and its application.
The Statistician . 47 , 69-100.

Brooks S P and Gelman A (1998) Alternative methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics . 7 , 434-455.

Carlin B P
and Louis T A (1996) Bayes and Empirical Bayes Methods for Data Analysis . Chapman and Hall, London, UK.

Congdon P (2001)
Bayesian Statistical Modelling . John Wiley & Sons, Chichester, UK.

Crowder M J (1978) Beta-binomial Anova for proportions.
Applied Statistics . 27 , 34-37.

Gamerman D (1997) Sampling from the posterior distribution in generalized linear mixed models.
Statistics and Computing . 7 , 57-68.

Gelman A, Carlin J C, Stern H and Rubin D B (1995)
Bayesian Data Analysis. Chapman and Hall, New York.

Gilks W (1992) Derivative-free adaptive rejection sampling for Gibbs sampling. In
Bayesian Statistics 4 , (J M Bernardo, J O Berger, A P Dawid, and A F M Smith, eds), Oxford University Press, UK, pp. 641-665.

Gilks W R, Richardson S and Spiegelhalter D J (Eds.) (1996)
Markov chain Monte Carlo in Practice . Chapman and Hall, London, UK.

Jackson C H (2008) Displaying uncertainty with shading. The American Statistician. 62 , 340-347.

Neal R (1997) Markov chain Monte Carlo methods based on 'slicing' the density function.
Technical Report 9722 , Department of Statistics, University of Toronto, Canada:

Neal R (1998) Suppressing random walks in Markov chain Monte Carlo using ordered over-relaxation. In
Learning in Graphical Models , (M I Jordan, ed). Kluwer Academic Publishers, Dordrecht, pp. 205-230.

Roberts G O (1996). Markov chain concepts related to sampling algorithms. In W R Gilks, S Richardson and D J Spiegelhalter (Eds.) Markov chain Monte Carlo in Practice . Chapman and Hall, London, UK.

Spiegelhalter D J, Best N G, Carlin B P and van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion).
J. Roy. Statist. Soc. B . 64 , 583-640.

Tierney L (1983) A space-efficient recursive procedure for estimating a quantile of an unknown distribution.
SIAM J. Sci. Stat. Comput . 4 , 706-711.