Bayes factors using pseudo priors
Bayes factors using the Carlin and Chib method. For full description see Page 47 of Classic BUGS examples Vol 2.
model{
# standardise data
for(i in 1:N){
Ys[i] <- (Y[i] - mean(Y[])) / sd(Y[])
xs[i] <- (x[i] - mean(x[])) / sd(x[])
zs[i] <- (z[i] - mean(z[])) / sd(z[])
}
# model node
j ~ dcat(p[])
p[1] <- 0.9995 p[2] <- 1 - p[1] # use for joint modelling
# p[1] <- 1 p[2] <- 0 # include for estimating Model 1
# p[1] <- 0 p[2] <-1 # include for estimating Model 2
pM2 <- step(j - 1.5)
# model structure
for(i in 1 : N){
mu[1, i] <- alpha + beta * xs[i]
mu[2, i] <- gamma + delta*zs[i]
Ys[i] ~ dnorm(mu[j, i], tau[j])
cumulative.Ys[i] <- cumulative(Ys[i], Ys[i])
}
# Model 1
alpha ~ dnorm(mu.alpha[j], tau.alpha[j])
beta ~ dnorm(mu.beta[j], tau.beta[j])
tau[1] ~ dgamma(r1[j], l1[j])
# estimation priors
mu.alpha[1]<- 0 tau.alpha[1] <- 1.0E-6
mu.beta[1] <- 0 tau.beta[1] <- 1.0E-4
r1[1] <- 0.0001 l1[1] <- 0.0001
# pseudo-priors
mu.alpha[2]<- 0 tau.alpha[2] <- 256
mu.beta[2] <- 1 tau.beta[2] <- 256
r1[2] <- 30 l1[2] <- 4.5
# Model 2
gamma ~ dnorm(mu.gamma[j], tau.gamma[j])
delta ~ dnorm(mu.delta[j], tau.delta[j])
tau[2] ~ dgamma(r2[j], l2[j])
# pseudo-priors
mu.gamma[1] <- 0 tau.gamma[1] <- 400
mu.delta[1] <- 1 tau.delta[1] <- 400
r2[1] <- 46 l2[1] <- 4.5
# estimation priors
mu.gamma[2] <- 0 tau.gamma[2] <- 1.0E-6
mu.delta[2] <- 0 tau.delta[2] <- 1.0E-4
r2[2] <- 0.0001 l2[2] <- 0.0001
}
Data
( click to open )
Inits for chain 1
Inits for chain 2
( click to open )
Results