Orange Trees: Non-linear growth
curve
We repeat the Otrees example, replacing the 3 independent univariate Normal priors for each
f
ik
, k=1,2,3 by a multivariate Normal prior
f
i
~ MNV(
m
,
T
)
model {
for (i in 1:K) {
for (j in 1:n) {
Y[i, j] ~ dnorm(eta[i, j], tauC)
eta[i, j] <- phi[i, 1] / (1 + phi[i, 2] * exp(phi[i, 3] * x[j]))
}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(theta[i, 2]) - 1
phi[i, 3] <- -exp(theta[i, 3])
theta[i, 1:3] ~ dmnorm(mu[1:3], tau[1:3, 1:3])
}
mu[1:3] ~ dmnorm(mean[1:3], prec[1:3, 1:3])
tau[1:3, 1:3] ~ dwish(R[1:3, 1:3], 3)
sigma2[1:3, 1:3] <- inverse(tau[1:3, 1:3])
for (i in 1 : 3) {sigma[i] <- sqrt(sigma2[i, i]) }
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1 / sqrt(tauC)
}
Data
( click to open )
Inits for chain 1
Inits for chain 2
( click to open )
Results
A 4000 iteration Metropolis adaptive phase plus 1000 update burn in followed by a further 10000 updates gave the parameter estimates: