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Multi-state models

. . . or any other state and transition structure

Parameters: continuous-time models with transition intensities / rates / hazards
qrs = exp(βrsx)

Estimate:, e.g.,
▶ expected time spent in a state (e.g. duration of an infection)
▶ probabilities of transition between states, over periods of time . . .
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Data

Multi-state models get applied to a wide range of data structures

Continuous-time models, but intermittent observations: In our applications, we only
know the state at a finite set of times — e.g. when person is tested for infection

Don’t know transition times
between states:
▶ e.g. when someone got the

infection, when it cleared
Some infections may be completely
unobserved for people in the data
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Model estimation and challenges

Standard framework based on maximum likelihood estimation (Kalbfleisch and Lawless,
JASA 1985) msm R package (CRAN, Jackson 2011 J. Stat. Soft.) widely used.

Consequences of intermittent observation:

Strong model assumptions
▶ Markov assumption: exponentially-distributed staying time in state
▶ Constant or piecewise-constant hazards

Estimation challenges:
▶ lots of parameters, hard to tell which are informed by data →

▶ model fitting prone to non-convergence
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Semi-Markov “phase-type” model

(Titman and Sharples Biometrics 2012).

Allows the rate of transition out of some state to change with the time spent in that
state. Example:

Replace an observable state (state 1 in this picture) with a set of latent states (“phases”).
Latent states follow a Markov model.

Hidden Markov model: hence likelihood calculation tractable
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Phase-type sojourn distributions

In a Markov model, the sojourn time in every state is exponentially distributed

In this semi-Markov model, the sojourn time in some state follows a “phase-type”
sojourn distribution

Time from entering state 1 to reaching the “Exit” state in a continuous-time Markov
model structure like this:

Phase 1

Exit

▶ More latent phases and transitions → more flexible sojourn distribution . . . more
estimation challenges, particularly with coarse data
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Phase-type approximations to common distributions

Approximate the Weibull or Gamma (shape a, scale b) with a phase-type family with
rate λ = bh(a) (Titman, Stat Comp 2014)
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5−phase (rates λ=h(a))

Gamma (shape a, scale 1)

1. Find a function h() that maps shape a to
parameters λ of best-matching phase type
— store h() in software

2. Observe data. Define multi-state model
where some state has this sojourn
distribution, parameterised by a, b.

3. Fit model using (tractable!) hidden
Markov model likelihood, based on the
matching phase-type family
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Phase-type approximations by moment matching

Titman (2014) did a complicated spline fitting to find the mapping h()
Easier way: for phase-type
distributions of this form, there is an
analytic formula for λ, µ, p that give a
particular mean, variance and
skewness

Phase 1

Exit

pλ µ µ µ

(1− p)λ µ

(Bobbio et al. Stochastic Models 2005)

So to approximate Gamma (or Weibull), given shape and scale,
▶ Calculate first three moments of the Gamma (or Weibull)
▶ → determine matching phase parameters λ, p, µ.

With more phases n, can match a wider range of the target distribution. Example. . .
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Example
Gamma with shapes 0 to 3 can be moment-matched to 3-phase distributions

Phase 1

Exit

µ µ

(1− p)λ µ
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Gamma with shapes up to 5 can be moment-matched to 5-phase distributions
Phase 1
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pλ µ µ µ

(1− p)λ µ
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3−phase (rates λ=h(a))

Gamma (shape a, scale 1)

Choose number of phases: assumption about expected flexibility
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Building multi-state models with “phase-type” states

One or more states r can have a “phase-type approximation” sojourn distribution with
shape a, scale b

Covariates: can modify the scale parameter
b

Or if 2+ “competing risks” on leaving a
“phase-type” state: covariates can affect
probability of competing state
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Computation

Bayesian inference, maximum likelihood or approximate Bayes (Laplace around posterior
mode), using “off-the-shelf” algorithms in the Stan software

Identifiability/stability
▶ Weakly informative prior/penalty from background information recommended
▶ Pure MLE often fails with infrequently-observed data
▶ What if no information in data? Get posterior where all information comes from

the prior. More useful than convergence failure

Scalability: With number of distinct covariate values / observation times, size of the
latent state space. . .
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msmbayes R package
Extends the msm package for Markov models to do Bayesian inference and phase-type
semi-Markov models

Familiar interface, like common R modelling packages

Q <- rbind(c(0, 1),
c(1, 0)) # 2-state transition structure

priors <- list(
msmprior("time(1,2)", median=10, upper=30),
msmprior("time(2,1)", median=0.5, upper=1)

)
mod <- msmbayes(data = infsim, state="state", time="months",

subject="subject", qmatrix=q, priors=priors,...)
summary(mod)
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Simulation-based calibration study (as in Talts et al. 2018)

Assess correctness of Bayesian computation procedure:
▶ Simulate many datasets from prior predictive distribution
▶ Fit models to them: average of resulting posteriors should match the prior

Designed here around infection duration example (2 or 3-state).

Results:
▶ MCMC estimation accurate under a range of model structures, but slow
▶ Laplace approximation is mildly biased / underestimates uncertainty, but allows

scalability
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Applications

(a) Estimating infection duration and incidence

Cohort of people tested intermittently.
Start / end times of person’s infection unknown.

(b) Cancer screening

No cancer → detectable precursor → clinical cancer . . ..
Incidence, time to progression not exponentially distributed.
Choose optimal screening interval. (e.g. Akwiwu et al. BMC Med Res Meth 2022)

(c) Cognitive function

Longitudinal studies of ageing, observations every 2 years.
Dynamics of decline in cognitive function, and mortality.
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Realistically-complex illustrative application:

1: 7-10 words 2: 5-6 words 3: 2-4 words 4: 0-1 words

Death

English Longitudinal Study of Ageing. Cognitive function test: how many words from
a list of 10 recalled after a few minutes. ≈ 5000 observations from people aged 50+,
every 2 years.

Semi-Markov model on all four states: 21 latent “phases”

Predictors of transitions: age, gender, education

Strong priors on mortality rates from national statistics

MCMC not feasible, use Laplace approximation to posterior
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Results

“Covariate effect parameters” hard to
interpret. Instead:

Calculate expected total amount of
time spent with no/mild cognitive
impairment over next 10 years

Compare this between categories of
one covariate (standardised over others)
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Discussion

Made semi-Markov models for intermittently-observed data practicable

Software to make Bayesian inference in general Markov and semi-Markov models
accessible

Challenges: computational scalability, prior specification, more practical experience and
training resources. . .

https://chjackson.github.io/msmbayes

Paper on ArXiV linked from there, with full details of the studies described here.
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