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Examples of multi-state models

General discrete(finite)-state, continuous-time stochastic process

Survival model
1 = Alive 2 = Dead

Illness-death model

1. Well 2. Illness

3. Death

Relapsing and remitting non-fatal
condition

1. No symptoms 2. Symptoms

Staged disease progression model

1. Well 2. Mild disease 3. Severe disease

3. Death

I Many situations where we represent a disease as a multi-state
process

I States chosen from clinical convention, or corresponding to
measured data, though disease severity may be continuous
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Transition intensities

1. Well 2. Mild 3. Severe

4. Death

q12(t,Ft) q23(t,Ft)

q14(t,Ft) q24(t,Ft) q34(t,Ft)

Multi-state models are fully specified by their transition intensities
qrs(t,Ft) : r 6= s, r , s = 1, ...,R.
Rate of transition to state s for someone currently in state r .

qrs(t;Ft) = lim
δt→0

P(X (t + δt) = s|X (t) = r ,Ft)

δt
, r 6= s, r , s = 1, ...,R

I Not a probability but a rate

I May depend on current time t and also the history Ft
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Context for this talk (previous sessions)

Previous talks dealt with fitting multi-state models to data where:

I we know the state at all times

I that is, the process is continuously observed
I Data can be represented as times to events

I or times from one event to another
I potentially with censoring

I Multi-state modelling methods can be constructed as
generalisations of survival analysis.
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Context for this talk

Years after transplant

State 1

State 2

State 3

State 4

0.0 1.5 3.5 5.0 9.0

Underlying process
Observation times

Instead, this talk will mainly deal with intermittently observed data

I Only know the state at a finite series of times

To be able to fit the models to data, first we’ll need some more
probability theory. . .
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Markov processes

If qrs(t;Ft) = qrs(t) where t is time since start of process
i.e. no dependence on history Ft :

I time spent in the current state

I states visited previously by the individual and time spent in
them

then the process is a (continuous-time) Markov process, or Markov
model

Extensive theory developed for continuous-time Markov models,
e.g. textbooks

I Cox & Miller Theory of Stochastic Processes

I Norris Markov Chains

I Kulkarni Modeling and Analysis of Stochastic Systems
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Other special cases and variants

Semi-Markov model qrs(t;Ft) depends only on Ft through time
since entered current state,

I Most general non-Markov model considered in this talk.

Time-homogeneous Markov model qrs(t;Ft) = qrs
I transition rate is constant (over some time period)

I piecewise-constant models are important with intermittent
observation. . .

Dependence on covariates z(t): qrs(z(t);Ft)

I covariates could be constant or time-varying

I proportional hazards common

qrs(z(t);Ft) = q
(0)
rs (t,Ft) exp(β′z(t))
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Transition intensity matrix in a time-homogeneous Markov
model

Transition intensity matrix Q: r , s entry equals the intensity qrs
. . . q12 q13 · · · q1n

q21
. . . q23 · · · q2n

q31 q32
. . . · · · q3n

...
. . .

...


Additionally define the diagonal entries qrr = −

∑
s 6=r qrs , so that

rows of Q sum to zero. Then we have:
I Sojourn time Tr (spent in state r before moving) has

exponential distribution
I rate −qrr , i.e. mean −1/qrr .
I Pr(still in state r in t units’ time) P(T > t)? exp(qrr t)

I Pr(next state is s | in r now)? −qrs/qrr = qrs/
∑

j!=r qrj
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Transition probability matrix P(t)

Probability of being in some state at a specific time in the future

prs(t0, t) = P(state s at time t0 + t | state r at time t0)

P(t0, t): matrix with r , s entry prs(t0, t), solves the
Kolmogorov forward equation in terms of intensities Q(t)

dP(t0, t)

dt
= P(t0, t)Q(t0 + t) with P(t0, t0) = I

If Q is time-homogeneous over desired time interval

I where Q(t) = Q and prs(t0, t) = prs(t) is independent of t0
I explicit solution using the matrix exponential

P(t) = Exp(tQ) =
∑∞

n=0
tn

n!Q
n

(can be computed with specialised numerical methods, or element-wise solution
for each prs(t) for some simpler models)
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Time-varying transition intensities

Transition intensities Q(t) commonly not constant with t .

If they can be modelled as piecewise constant

I Compute P(t0, t) = P(t0, t1)P(t1, t2) . . .P(tn−1, t0 + t) over
n intervals where Q is constant

More generally if Q(t) not constant, compute P(t0, t) by solving
the Kolmogorov equation numerically

dP(t0, t)

dt
= P(t0, t)Q(t + t0) with P(t0, t0) = I

I e.g. Titman, Biometrics 67:780–7, 2011

I deSolve R package
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Quantities of interest in a multi-state model

e.g. for person in state r at current time t = 0, total time they are
expected to spend in state s before time t is

E

{∫ t

0
IX (u)=sdu

}
=

∫ t

0
prs(u)du

e.g. expected total time spent with symptoms over 10 years in

1. No symptoms 2. Symptoms

Other quantities of interest, e.g.
I expected first passage time (time to reach particular state)

I expected number of visits to a state

straightforward functions of transition probabilities or intensities.

van Loan (1978) IEEE Trans Automatic Control 23(3)395–404
van Rosmalen et al. (2013) Med. Decis. Making 33:767-779
msm package documentation
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“Panel data” or intermittent observation

Years after transplant

State 1

State 2

State 3

State 4

0.0 1.5 3.5 5.0 9.0

Underlying process
Observation times

I For each patient i = 1, . . . ,N, only observe state at a finite
series of times. Common in chronic disease modelling.
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Likelihood for panel data

(Kalbfleisch and Lawless, JASA 1985)

I Data x: states (xi1, . . . , xini ) at times (ti1, . . . , tini ) for person i
Conditional on state at ti0 = 0 (e.g. xi0 = 1)

I Parameters: θ = {qrs}: transition intensities of Markov model

Likelihood contribution for person i is product of transition
probabilities

Li (θ|xi ) = p(xi1|xi0)p(xi2|xi1) . . . p(xini |xi ,ni−1)

=

ni∏
j=1

pxi,j−1,xij (ti ,j−1, tij |θ)

I Markov assumption → xi ,j+1|xi ,j indep. of xi ,1 . . . xi ,j−1
I Intensities constant within each interval (ti ,j−1, ti ,j): each

transition probability is a closed form function of θ.
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Maximum likelihood estimation

I Maximise the likelihood as a function of transition intensities
(and covariate effects on these, see later)

I Then we can compute quantities of interest as functions of
intensities:
I transition probabilities
I expected total time spent in a state
I etc.. . . for different covariate values

I Confidence intervals can be computed by simulation, given the
Hessian at the maximum likelihood

I All models from this section implemented in the msm package
for R (see practical course in September)

Several variants of this basic data and model. . .
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Panel data with exact death time observed

Years after transplant

State 1

State 2

State 3

Death

0.0 1.5 3.5 5.0 9.0

Underlying process
Observation times

I For patients who die, day of death known, so assume death
time known exactly, but state s at previous instant is unknown

I Get likelihood contribution for final time interval (ti ,ni−1, ti ,ni )
by summing over “alive” states s:∑

s

pr ,s(tini − ti ,ni−1)qsD , r = xi ,ni−1
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Data with all transition times known?

We could accumulate the likelihood from terms that look like

I P(move out of state r at a time trs after entering state r)

I P(this move is to state s)

or equivalent formulations.

But these can be calculated easily from any parametric survival
distribution — no need to assume piecewise-constant intensities

See framework from other talks based on survival modelling /
competing risks ideas.

For fully-parametric modelling of this kind of data, see e.g.
flexsurv R package, or Stata multistate package.
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Likelihood with partially-known (“censored”) state

Years after transplant

State 1

State 2

State 3

Death

0.0 1.5 3.5 5.0 9.0

?
?
?

(no)

Underlying process
Observation times

I Suppose patient i known to be alive at final time tini , but in
an unknown disease state xini

I Then likelihood contribution for the final transition is∑
s 6=D pr ,s(tini − ti ,ni−1) = 1− pr ,D(tini − ti ,ni−1), r = xi ,ni−1

I Generalises easily to partially-known intermediate states
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Covariates

Intensities typically given log-linear model

qrs(zi ) = q
(0)
rs exp(

M∑
m=1

βmzijm)

I exp(βm) is hazard ratio for mth covariate for ith individual’s
jth observation

I Covariates could be constant for all times j for individual i

I Any time-varying covariates assumed piecewise-constant:
I Easiest if constant within each observation interval (ti,j−1, ti,j)
I Or if state unknown at a time when covariate changes:

integrate over this state using “censored state” likelihood
(previous slide)
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Time-dependent transition intensities

Covariates could include time itself, giving a time-inhomogeneous
model, e.g.

I as a categorical variable, with different intensity estimated for
a series of time periods

I through a piecewise-constant approximation to a standard
parametric hazard function, e.g. in

qrs(zi ) = q
(0)
rs exp(

M∑
m=1

βmzijm)

setting
zijm = log(tij)
zijm = tij

}
approximates a

{
Weibull
Gompertz

model for the time of transition from state r to s1

More general, non piecewise-constant models, possible in principle,
though not in msm (would need numerical ODE solvers).

1van den Hout (2017) Multi-State Survival Models for Interval-Censored Data.
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Hidden Markov models: misclassification of states

1. No disease 2. Mild disease 3. Severe disease

4. Death

1. No disease 2. Mild disease 3. Severe disease

4. Death

Observed “well” Observed “mild” Observed “severe”

e.g, could assume
e13 = e31 = 0

I What if disease is known to be an irreversible process. . .

I . . .but transitions from worse to better states observed?

I Screening test may be subject to misclassification

Assume observed state O(t) generated with error given true states
X (t)

ers = P(O(t) = s|X (t) = r), err = 1−
∑
s!=r

ers

True states follow a hidden multi-state model (e.g. hidden Markov)
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Misclassification likelihood

Individual i , observed states Oij at time tij , likelihood contribution is
summed over all possible pathways through true states X

Li = P(Oi0, . . . ,Oini ) =
∑
{X}

P(Oi0, . . . ,Oini |Xi0, . . . ,Xini )P(Xi0, . . . ,Xini )

If the Oij |Xij conditionally independent and true process is Markov

Li =
∑
Xi0

P(Oi0|Xi0)P(Xi0)
∑
Xi1

P(Oi1|Xi1)P(Xi1|Xi0) . . .
∑
Xini

P(Oini |Xini )P(Xini |Xi,ni−1)

Maximise likelihood as a function of transition rates Q, misclassification
probabilities e, any covariate effects

I Initial true state probabilities P(Xi0) can also be estimated, or fixed. For
example, could know Xi0 = 1: everyone disease-free at start

Jackson et al (Statistician 2003), after Satten and Longini (Appl. Stat 1997),
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Hidden Markov model with any/multiple outcomes

S0

S1

S2

S3

. . .

T
im

e...

Disease
status

y01 y02 y03 y04

y05 y06 y07 y08

y01 y02 y03 y04

y05 y06 y07 y08

y11 y12 y13 y14

y15 y16 y17 y18

y11 y12 y13 y14

y15 y16 y17 y18

Symptom scores

I Clinical interest in a discrete, latent
disease process
I following a multi-state model

I Vector yij of observations, from each
person i , at times j
I e.g. multiple symptoms, biomarkers

I Specify joint distribution of (yij |S) for
each potential hidden state S

I Likelihood similar to misclassification
model

I Usually need constraints for identifiability
I state known at some times
I constraints on state-specific parameters

Satten and Longini (Appl. Stat 1997), Jackson and Sharples (Stat Med 2002) for HMM with general outcome
Jackson, Su, Gladman & Farewell (Arthritis Care and Research 2017) for multiple outcomes
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Semi-Markov models for intermittently-observed data

Markov models: transition rates independent of

I previous states visited

I time in current state

Phase-type model

I E.g.: transition rate from state 2 depends on time spent there

I Replace state 2 by a series of hidden “phases”.

I Expanded state structure follows a Markov process.

1. No CAV

2. Mild CAV 3. Severe CAV

4. Death

2: Phase a 2: Phase b 3. Severe CAV

4. Death

Likelihood the same as that for a hidden Markov model on the
expanded state structure → can use msm.

I See Titman and Sharples (2010) Biometrics 66

I phase.states option to msm() function
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Practical concerns with modelling intermittent observations

It can be tempting to make the model too big
I → non-identifiable models, or flat/awkward likelihood

function that can’t be maximised.

Careful of, e.g.
I choice of state structure. If states are ordered (e.g. disease

severity) should only allow transitions between adjacent
states. Jumps not plausible in continuous time.

1. Well 2. Mild disease 3. Severe disease

3. Death

I if several covariates, affecting different transitions in different
ways – may need to restrict/constrain effects.

I misclassification models typically need structural constraints.
e.g. data can’t distinguish “backwards” transitions (e.g.
severe to mild disease) from misclassification (e.g. of severe
as mild)

Optimisation routines can sometimes be tweaked to help
convergence, but can’t rescue an inappropriate model
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Random effects or hierarchical multi-state models

I “Frailties” shared between groups of individuals, or between
different transition types within an individual

I Difficult to distinguish individual frailties from dependence on
history (Cook & Lawless 2012)

Implementation and examples:

I Maximum marginal likelihood (e.g. O’Keeffe, Tom & Farewell,

JRSSC 2011; Yiu, Farewell & Tom, JRSSC 2018; Cook et al, Biometrics

2004)

I Bayesian methods
I See e.g. van den Hout, Multi-state Survival Models for Interval

Censored Data CRC 2017
I MCMC estimation
I JAGS and Stan have matrix exponential, allowing general

panel data likelihood
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Other advanced models for intermittent data (b)

Informative observation times

I When data are observed intermittently, observation time may
depend on status at that time

I Jointly model observation process and outcome process, e.g.
I Lange et al., Biometrics 2015
I Sweeting, Farewell & De Angelis, Stat. Med. 2010

Joint models for multistate and other longitudinal data
e.g.

I Dantan et al. Biostatistics 2011 (dementia and cognitive function)

I Ferrer et al. Stat. Med. 2016 (cancer recurrence and biomarker series)
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Model checking and comparison

(Titman & Sharples, “Model diagnostics for multi-state models” SMMR, 2010)

I Fit elaborated model with questionable assumption relaxed,
then compare using e.g. likelihood ratio, AIC.

I Intermittent data makes it hard to check absolute fit
I e.g compare fitted transition probabilities p(t) to observed

prevalence of a state at time t
I what if not everyone measured at time t?
I Current approaches msm use imputations/approximations of

observed state

I If death times observed, could compare parametric estimates
of survival against Kaplan-Meier estimates.

I Pearson-type goodness-of-fit tests have been proposed
I low power, sensitive to how data grouped to construct the test
I hard to interpret: what part of the model is most wrong?
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Multi-state models for aggregate data

Age Disease preva-
lence

Mortality
from disease

0 0
. . .

40 r1/n1 s1/m1

45 r2/n2 s2/m2

50 r3/n3 s3/m3

. . .

1. Well

2. Disease

3. Death from disease

q1(t)

q2(t)

I Survey of ni people by age i gives disease prevalence ri/ni
I Mortality data: si/mi people die from disease at each age i
I Infer disease incidence q1(t) and case fatality q2(t)

ri ∼ Bin(ni , p12(0, ti )), si ∼ Bin(mi , p23(ti−1, ti ))

I prs(., .): transition probability from the multi-state model
I function of q1(t), q2(t) through Kolmogorov equation

(Ongoing work: github.com/chjackson/disbayes, Bayesian, in Stan)
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Review of methods for intermittent observation and worked examples of
implementing in R
See you in September, hopefully, for more about this package!
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Thanks for listening!

chris.jackson@mrc-bsu.cam.ac.uk

www.mrc-bsu.cam.ac.uk
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